资源类型

期刊论文 588

年份

2024 1

2023 43

2022 66

2021 59

2020 36

2019 57

2018 37

2017 45

2016 24

2015 25

2014 28

2013 26

2012 16

2011 24

2010 12

2009 26

2008 13

2007 16

2006 4

2005 3

展开 ︾

关键词

反渗透 7

燃料电池 7

固体氧化物燃料电池 6

干细胞 3

SOFC 2

临床试验 2

催化剂 2

双极板 2

反渗透膜 2

固体氧化物电解池 2

太阳电池 2

氢燃料电池 2

氢能 2

生物表面活性剂 2

生物降解 2

耐氯性 2

聚酰胺 2

膜材料 2

高压 2

展开 ︾

检索范围:

排序: 展示方式:

Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1708-y

摘要:

● Appreciable H2O2 production rate was achieved in MRCs utilizing NH4HCO3 solutions.

关键词: Microbial reverse-electrodialysis cell     Hydrogen peroxide production     Ammonium bicarbonate     Electrolysis cell     Optimization    

Tracing the impact of stack configuration on interface resistances in reverse electrodialysis by in situ

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1480-9

摘要:

• RED performance and stack resistance were studied by EIS and LSV.

关键词: Reverse electrodialysis     Electrochemical impedance spectroscopy     Concentration polarization     Spacer shadow effect    

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 317-323 doi: 10.1007/s11783-013-0596-y

摘要: Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl , KCl, and CaCl with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca >Mg >Na >K . Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na were one-fifth to five times of Mg , ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

关键词: divalent ion     electrodialysis     ion characteristic     microbial desalination cell     monovalent ion    

电渗析组合反渗透过程处理头孢氨苄酶法母液废水的研究

阮慧敏,黄杰,李健,沈江南,王家德,高从堦

《中国工程科学》 2014年 第16卷 第7期   页码 42-46

摘要:

利用电渗析技术脱除头孢氨苄酶法母液废水中的盐分,研究了操作电压、浓缩室与淡化室流速比、温度等因素对电渗析脱盐过程的影响,并研究了反渗透膜法处理脱盐母液废水的膜通量变化趋势。实验结果表明,当淡化室、浓缩室流量均为500 L/h(流速比1∶1),操作电压为25 V,温度<30 ℃时,电渗析在高效脱盐的同时具有理想的有机物截留率达99.50 %以上,能耗3.65 kW · h/kg;反渗透膜法在处理脱盐母液废水时,膜通量衰减较慢,水回收率达到75.67 %。实验结果表明,利用电渗析、反渗透组合工艺处理头孢氨苄酶法母液废水具有良好的可行性。

关键词: 头孢氨苄     废水     电渗析     反渗透    

A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 307-312 doi: 10.1007/s11783-009-0028-1

摘要: Current methods for testing the electricity generation capacity of isolates are time- and labor-consuming. This paper presents a rapid voltage testing system of exoelectrogenic bacteria called Quickscreen, which is based on a microliter microbial fuel cell (MFC). and were used as the model exoelectrogenic bacteria; that cannot generate electricity was used as a negative control. It was found that the electricity generation capacity of the isolates could be determined within about five hours by using Quickscreen, and that its time was relatively rapid compared with the time needed by using larger MFCs. A parallel, stable, and low background voltage was achieved using titanium as a current collector in the blank run. The external resistance had little impact on the blank run during the initial period. The cathode with a five-hole configuration, used to hydrate the carbon cathode, gave higher cathode potentials than did that with a one-hole configuration. Steady discharge and current interrupt methods showed that the anode mostly contributed to the large internal resistance of the Quickscreen system. However, the addition of graphite felt decreased the resistance from 18kΩ to 5kΩ. This device was proved to be useful to rapidly evaluate the electricity generation capacity of different bacteria.

关键词: microbial fuel cell     exoelectrogenic bacteria     rapid screening    

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 913-919 doi: 10.1007/s11783-013-0583-3

摘要: A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, and TN were10, 0.37 and 0.4 kg·(m ·d) , respectively.

关键词: microbial fuel cell (MFC)     oxic-anoxic two stage biocathode     denitrifying    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 453-460 doi: 10.1007/s11705-012-1210-8

摘要: Large waste water disposal was the major problem in microbial lipid fermentation because of low yield of lipid. In this study, the repeated batch fermentation was investigated for reducing waste water generated in the lipid fermentation of an oleaginous yeast CX1 strain. The waste fermentation broth was recycled in the next batch operation after the cells were separated using two different methods, centrifugation and flocculation. Two different sugar substrates, glucose and inulin, were applied to the proposed operation. The result showed that at least 70% of the waste water was reduced, while lipid production maintained satisfactory in the initial four cycles. Furthermore, it is suggested that CX1 cells might produce certain naturally occurring inulin hydrolyzing enzyme(s) for obtaining fructose and glucose from inulin directly. Our method provided a practical option for reducing the waste water generated from microbial lipid fermentation.

关键词: batch fermentation     microbial lipid     Trichosporon cutaneum CX1     flocculation     waste water recycle    

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 569-574 doi: 10.1007/s11783-011-0335-1

摘要: A sediment microbial fuel cell (SMFC) with three dimensional floating biocathode (FBC) was developed for the electricity generation and biodegradation of sediment organic matter in order to avoid negative effect of dissolved oxygen (DO) depletion in aqueous environments on cathode performance and search cost-effective cathode materials. The biocathode was made from graphite granules with microbial attachment to replace platinum (Pt)-coated carbon paper cathode in a laboratory-scale SMFC (3 L in volume) filled with river sediment (organic content 49±4 g·kg dry weight). After start-up of 10 days, the maximum power density of 1.00W·m (based on anode volume) was achieved. The biocathode was better than carbon paper cathode catalyzed by Pt. The attached biofilm on cathode enhanced power generation significantly. The FBC enhanced SMFC performance further in the presence aeration. The SMFC was continuously operated for an over 120-day period. Power generation peaked within 24 days, declined gradually and stabilized at a level of 1/6 peak power output. At the end, the sediment organic matter content near the anode was removed by 29% and the total electricity generated was equal to 0.251 g of chemical oxygen demand (COD) removed.

关键词: microbial fuel cell (MFC)     sediment     biocathode     electricity generation     organic removal    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 21-27 doi: 10.1007/s11783-011-0303-9

摘要: New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

关键词: polymerase chain reaction (PCR)     microbial communities     pyrosequencing     gut     microbial fuel cell     sludge    

Microbial fuel cell with high content solid wastes as substrates: a review

Qingliang Zhao,Hang Yu,Weixian Zhang,Felix Tetteh Kabutey,Junqiu Jiang,Yunshu Zhang,Kun Wang,Jing Ding

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0918-6

摘要: Fundamentals and configuration design of MFCs fueled by HCSW were reviewed. HCSWs including sewage sludge, biomass and biowaste treated in MFCs were summarized. HCSW based MFCs technologies covered the types of sediment, soil, wetland and plant. Activated sludge process and composting could be coupled with HCSW-MFCs. HCSW-MFCs could be applied in bioremediation and biosensing. With the increasing concern about the serious global energy crisis and high energy consumption during high content solid wastes (HCSWs) treatment, microbial fuel cell (MFC) has been recognized as a promising resource utilization approach for HCSW stabilization with simultaneous electrical energy recovery. In contrast to the conventional HCSW stabilization processes, MFC has its unique advantages such as direct bio-energy conversion in a single step and mild reaction conditions (viz., ambient temperature, normal pressure, and neutral pH). This review mainly introduces some important aspects of electricity generation from HCSW and its stabilization in MFC, focusing on: (1) MFCs with different fundamentals and configurations designed and constructed to produce electricity from HCSW; (2) performance of wastes degradation and electricity generation; (3) prospect and deficiency posed by MFCs with HCSW as substrates. To date, the major drawback of MFCs fueled by HCSW is the lower power output than those using simple substrates. HCSW hydrolysis and decomposition would be a major tool to improve the performance of MFCs. The optimization of parameters is needed to push the progress of MFCs with HCSW as fuel.

关键词: Microbial fuel cell     High content solid wastes     Substrate     Bioremediation     Biosensor    

Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-productioncell and Fenton process

Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1191-7

摘要: MEDCC combined with Fenton process was developed to treat real pesticide wastewater. Pesticide removal was attributable to desalination in the MEDCC. High COD removal was attributable to organic distributions in different chambers. The combination of the microbial electrolysis desalination and chemical-production cell (MEDCC) and Fenton process for the pesticide wastewater treatment was investigate in this study. Real wastewater with several toxic pesticides, 1633 mg/L COD, and 200 in chromaticity was used for the investigation. Results showed that desalination in the desalination chamber of MEDCC reached 78%. Organics with low molecular weights in the desalination chamber could be removed from the desalination chamber, resulting in 28% and 23% of the total COD in the acid-production and cathode chambers, respectively. The desalination in the desalination chamber and organic transfer contributed to removal of pesticides (e.g., triadimefon), which could not be removed with other methods, and of the organics with low molecular weights. The COD in the effluent of the MEDCC combined the Fenton process was much lower than that in the perixo-coagulaiton process (<150 vs. 555 mg/L). The combined method consumed much less energy and acid for the pH adjustment than that the Fenton.

关键词: Pesticide wastewater     COD removal     Microbial electrolysis desalination and chemical-production cell     Energy consumption     Fenton oxidation    

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1409-3

摘要:

• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis.

关键词: Waste tire     MFCs     Micro-electrolysis     Anammox     Feammox    

Expression and clinical implication of PRL-1 and PRL-3 in transitional cell carcinoma of bladder

Bin HAO, Changwei LIU, Huixiang LI

《医学前沿(英文)》 2009年 第3卷 第2期   页码 197-203 doi: 10.1007/s11684-009-0036-3

摘要: The mRNA and protein expression of phosphatase of regenerating liver 1 (PRL-1) and phosphatase of regenerating liver 3 (PRL-3) in transitional cell carcinoma of bladder (BTCC) and normal epithelia of bladder was investigated, and the relationship between the BTCC and pathological changes was clarified. The expression of PRL-1 and PRL-3 mRNA was detected by using reverse transcription polymerase chain reaction (RT-PCR) in 30 cases of BTCC and 10 cases of normal bladder, and the expression of PRL-1 and PRL-3 protein was checked by using immunohistochemistry in 30 cases of BTCC and 15 cases of normal bladder. The expression levels of PRL-1 and PRL-3 mRNA and protein were higher in BTCC than those in normal bladder epithelia ( <0.05). The increased expression of PRL-1 and PRL-3 mRNA and protein was detectable in deep invasion and metastasis of BTCC ( <0.05). There was no correlation between the expression of PRL-1 and PRL-3 and gender, age or recurrence of BTCC (all >0.05). A significantly positive correlation was found between PRL-1 and PRL-3 in BTCC ( <0.05). PRL-1 and PRL-3 are expressed consistently and may contribute to the growth, differentiation, invasion and metastasis of BTCC.

关键词: transitional cell carcinoma of bladder     phosphatase of regenerating liver 1     phosphatase of regenerating liver 3     reverse transcription polymerase chain reaction     immunohistochemistry    

标题 作者 时间 类型 操作

Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic

期刊论文

Tracing the impact of stack configuration on interface resistances in reverse electrodialysis by in situ

期刊论文

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

期刊论文

电渗析组合反渗透过程处理头孢氨苄酶法母液废水的研究

阮慧敏,黄杰,李健,沈江南,王家德,高从堦

期刊论文

A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,

期刊论文

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

期刊论文

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文

Microbial fuel cell with high content solid wastes as substrates: a review

Qingliang Zhao,Hang Yu,Weixian Zhang,Felix Tetteh Kabutey,Junqiu Jiang,Yunshu Zhang,Kun Wang,Jing Ding

期刊论文

Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-productioncell and Fenton process

Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang

期刊论文

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled

期刊论文

Expression and clinical implication of PRL-1 and PRL-3 in transitional cell carcinoma of bladder

Bin HAO, Changwei LIU, Huixiang LI

期刊论文